Variance Metric: Difference between revisions

Jump to navigation Jump to search
m
Text replacement - "“" to "“"
(ContinuousReplacement)
Tag: continuous replacement
m (Text replacement - "“" to "“")
Line 25: Line 25:
<BR>
<BR>
* http://en.wikipedia.org/wiki/Variance#Definition
* http://en.wikipedia.org/wiki/Variance#Definition
** QUOTE: If a [[random variable]] ''X</i> has the [[expected value]] (mean) {{nowrap|1 = ''μ'' = E[''X'']}}, then the variance of ''X</i> is given by: :<math>\operatorname{Var}(X) = \operatorname{E}\left[(X - \mu)^2 \right]. \,</math>  <P> That is, the variance is the expected value of the squared difference between the variable's realization and the variable's mean.  This definition encompasses random variables that are [[discrete random variable|discrete]], [[continuous random variable|continuous]], or neither (or mixed). It can be expanded as follows:  :<math>\begin{align}  \operatorname{Var}(X)  &= \operatorname{E}\left[(X - \mu)^2 \right] \\      &= \operatorname{E}\left[X^2 - 2\mu X + \mu^2 \right] \\      &= \operatorname{E}\left[X^2 \right] - 2\mu\,\operatorname{E}[X] + \mu^2 \\      &= \operatorname{E}\left[X^2 \right] - 2\mu^2 + \mu^2 \\      &= \operatorname{E}\left[X^2 \right] - \mu^2 \\      &= \operatorname{E}\left[X^2 \right] - (\operatorname{E}[X])^2.  \end{align}</math>  <P> A mnemonic for the above expression is "mean of square minus square of mean".        <P>        The variance of random variable ''X</i> is typically designated as Var(''X''), <math>\scriptstyle\sigma_X^2</math>, or simply σ<sup>2</sup> (pronounced &ldquo;[[sigma]] squared").
** QUOTE: If a [[random variable]] ''X</i> has the [[expected value]] (mean) {{nowrap|1 = ''μ'' = E[''X'']}}, then the variance of ''X</i> is given by: :<math>\operatorname{Var}(X) = \operatorname{E}\left[(X - \mu)^2 \right]. \,</math>  <P> That is, the variance is the expected value of the squared difference between the variable's realization and the variable's mean.  This definition encompasses random variables that are [[discrete random variable|discrete]], [[continuous random variable|continuous]], or neither (or mixed). It can be expanded as follows:  :<math>\begin{align}  \operatorname{Var}(X)  &= \operatorname{E}\left[(X - \mu)^2 \right] \\      &= \operatorname{E}\left[X^2 - 2\mu X + \mu^2 \right] \\      &= \operatorname{E}\left[X^2 \right] - 2\mu\,\operatorname{E}[X] + \mu^2 \\      &= \operatorname{E}\left[X^2 \right] - 2\mu^2 + \mu^2 \\      &= \operatorname{E}\left[X^2 \right] - \mu^2 \\      &= \operatorname{E}\left[X^2 \right] - (\operatorname{E}[X])^2.  \end{align}</math>  <P> A mnemonic for the above expression is "mean of square minus square of mean".        <P>        The variance of random variable ''X</i> is typically designated as Var(''X''), <math>\scriptstyle\sigma_X^2</math>, or simply σ<sup>2</sup> (pronounced [[sigma]] squared").


=== 2005 ===
=== 2005 ===
* ([[Lord et al., 2005]]) ⇒ [[Dominique Lord]], [[Simon P. Washington]], and [[John N. Ivan]]. ([[2005]]). &ldquo;Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory.” In: Accident Analysis & Prevention, 37(1). [http://dx.doi.org/10.1016/j.aap.2004.02.004 doi:10.1016/j.aap.2004.02.004]  
* ([[Lord et al., 2005]]) ⇒ [[Dominique Lord]], [[Simon P. Washington]], and [[John N. Ivan]]. ([[2005]]). “Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory.” In: Accident Analysis & Prevention, 37(1). [http://dx.doi.org/10.1016/j.aap.2004.02.004 doi:10.1016/j.aap.2004.02.004]  
** QUOTE: The [[arithmetic mean|mean]] and [[arithmetic variance|variance]] of the [[binomial distribution]] are <math>E(Z) = Np</math> and <math>VAR(Z) = Np(1-p)</math> respectively.
** QUOTE: The [[arithmetic mean|mean]] and [[arithmetic variance|variance]] of the [[binomial distribution]] are <math>E(Z) = Np</math> and <math>VAR(Z) = Np(1-p)</math> respectively.


=== 1987 ===
=== 1987 ===
* ([[Davidian & Carroll, 1987]]) ⇒ M. Davidian and R. J. Carroll. (1987). &ldquo;Variance Function Estimation.” In: Journal of the American Statistical Association, 82(400).  http://www.jstor.org/stable/2289384
* ([[Davidian & Carroll, 1987]]) ⇒ M. Davidian and R. J. Carroll. (1987). “Variance Function Estimation.” In: Journal of the American Statistical Association, 82(400).  http://www.jstor.org/stable/2289384


----
----

Navigation menu