Newton's Third Law of Motion

From GM-RKB
(Redirected from Newton's Third Law)
Jump to navigation Jump to search

The Newton's Third Law of Motion is a Newton's law of motion which states that action equals reaction.



References

2016

2015

  • (NASA Website, 2016) ⇒ http://www.grc.nasa.gov/www/k-12/airplane/newton.html
    • The third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal force on object A. Notice that the forces are exerted on different objects. The third law can be used to explain the generation of lift by a wing and the production of thrust by a jet engine.

2005

  • (Hyperphysics Encyclopedia, 2005) ⇒ http://hyperphysics.phy-astr.gsu.edu/hbase/newt.html#ntcon
    • Newton's third law: All forces in the universe occur in equal but oppositely directed pairs. There are no isolated forces; for every external force that acts on an object there is a force of equal magnitude but opposite direction which acts back on the object which exerted that external force. In the case of internal forces, a force on one part of a system will be countered by a reaction force on another part of the system so that an isolated system cannot be any means exert a net force on the system as a whole. A system cannot "bootstrap" itself into motion with purely internal forces - to achieve a net force and an acceleration, it must interact with an object external to itself.
Without specifying the nature or origin of the forces on the two masses, Newton's 3rd law states that if they arise from the two masses themselves, they must be equal in magnitude but opposite in direction so that no net force arises from purely internal forces.
Newton's third law is one of the fundamental symmetry principles of the universe. Since we have no examples of it being violated in nature, it is a useful tool for analyzing situations which are somewhat counter-intuitive. For example, when a small truck collides head-on with a large truck, your intuition might tell you that the force on the small truck is larger. Not so!

1996

For every action, there is an equal and opposite reaction.
The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.
A variety of action-reaction force pairs are evident in nature. Consider the propulsion of a fish through the water. A fish uses its fins to push water backwards. But a push on the water will only serve to accelerate the water. Since forces result from mutual interactions, the water must also be pushing the fish forwards, propelling the fish through the water. The size of the force on the water equals the size of the force on the fish; the direction of the force on the water (backwards) is opposite the direction of the force on the fish (forwards). For every action, there is an equal (in size) and opposite (in direction) reaction force. Action-reaction force pairs make it possible for fish to swim.

1963

This principle is that action equals reaction.
What is meant is something of this kind: Suppose we have two small bodies, say particles, and suppose that the first one exerts a force on the second one, pushing it with a certain force. Then, simultaneously, according to Newton’s Third Law, the second particle will push on the first with an equal force, in the opposite direction; furthermore, these forces effectively act in the same line. This is the hypothesis, or law, that Newton proposed, and it seems to be quite accurate, though not exact (we shall discuss the errors later). For the moment we shall take it to be true that action equals reaction. Of course, if there is a third particle, not on the same line as the other two, the law does not mean that the total force on the first one is equal to the total force on the second, since the third particle, for instance, exerts its own push on each of the other two. The result is that the total effect on the first two is in some other direction, and the forces on the first two particles are, in general, neither equal nor opposite. However, the forces on each particle can be resolved into parts, there being one contribution or part due to each other interacting particle. Then each pair of particles has corresponding components of mutual interaction that are equal in magnitude and opposite in direction.