Data-Driven Text Generation (NLG) Algorithm
(Redirected from NLG algorithm)
Jump to navigation
Jump to search
A Data-Driven Text Generation (NLG) Algorithm is an text generation algorithm that can be implemented by an NLG system to solve an NLG task.
- Context:
- It can (often) employs statistical or machine learning methods, and is especially prominent in the utilization of deep learning models.
- It can (often) be a Neural NLG Algorithm, such as: GSGAN, LeakGAN, MaskGAN, ...
- …
- Example(s):
- Content Creation:
- Machine Translation Algorithm.
- Question Answering Algorithm.
- Image Description Generation Algorithm.
- Text Correction and Refinement:
- Text Summarization Algorithm.
- Language Model-based NLG Algorithm.
- Prompt-based NLG Algorithm.
- …
- Counter-Example(s):
- See: WikiText Generation Algorithm.
References
2020
- (Karpukhin et al., 2020) ⇒ Vladimir Karpukhin, Barlas Oguz, Seo Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. (2020). “Dense Passage Retrieval for Open-Domain Question Answering." In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 6769-6781).
2018a
- (Clark et al., 2018) ⇒ Elizabeth Clark, Yangfeng Ji, and Noah A. Smith. (2018). “Neural Text Generation in Stories Using Entity Representations As Context.” In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), Volume 1 (Long Papers). DOI:10.18653/v1/N18-1204.
2018b
- (Fedus et al., 2018) ⇒ William Fedus, Ian Goodfellow, and Andrew M Dai. (2018). “MaskGAN: Better Text Generation via Filling in the ________". In: Proceedings of the Sixth International Conference on Learning Representations (ICLR-2018).
2018c
- (Guo et al., 2018) ⇒ Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. (2018). “Long Text Generation via Adversarial Training with Leaked Information.” In: Proceedings of the Thirty-Second (AAAI) Conference on Artificial Intelligence (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th (AAAI) Symposium on Educational Advances in Artificial Intelligence (EAAI-18).
2018d
- (Kudo & Richardson, 2018) ⇒ Taku Kudo, and John Richardson. (2018). “SentencePiece: A Simple and Language Independent Subword Tokenizer and Detokenizer for Neural Text Processing.” In: arXiv preprint arXiv:1808.06226.
2018e
- (Lee et al., 2018) ⇒ Chris van der Lee, Emiel Krahmer, and Sander Wubben. (2018). “Automated Learning of Templates for Data-to-text Generation: Comparing Rule-based, Statistical and Neural Methods.” In: Proceedings of the 11th International Conference on Natural Language Generation (INLG 2018). DOI:http://dx.doi.org/10.18653/v1/W18-6504
2018f
- (Song et al., 2018) ⇒ Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. (2018). “A Graph-to-Sequence Model for AMR-to-Text Generation.” In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018) Volume 1: Long Papers. DOI:10.18653/v1/P18-1150
2018g
- (Zhu et al., 2018) ⇒ Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. (2018). “Texygen: A Benchmarking Platform for Text Generation Models.” In: Proceedings of The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR 2018). DOI:10.1145/3209978.3210080.
2017a
- (Zhang et al., 2017) ⇒ Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin. (2017). “Adversarial Feature Matching for Text Generation". In: Proceedings of the 34th International Conference on Machine Learning (ICML 2017).
2017b
- (Li et al., 2017) ⇒ Jiwei Li, Will Monroe, Tianlin Shi, Sebastien Jean, Alan Ritter, and Dan Jurafsky. (2017). “Adversarial Learning for Neural Dialogue Generation.” In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017). DOI:10.18653/v1/D17-1230.
2017c
- (Lin, Li, et al., 2017) ⇒ Kevin Lin, Dianqi Li, Xiaodong He, Ming-ting Sun, and Zhengyou Zhang. (2017). “Adversarial Ranking for Language Generation.” In: Proceedings of Advances in Neural Information Processing Systems 30 (NIPS-2017).
2017d
- (Che et al., 2017) ⇒ Tong Che, Yanran Li, Ruixiang Zhang, R. Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Bengio. (2017). “Maximum-Likelihood Augmented Discrete Generative Adversarial Networks.” In: ArXiv Preprint: 1702.07983.
2017e
- (Semeniuta et al., 2017) ⇒ Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. (2017). “A Hybrid Convolutional Variational Autoencoder for Text Generation.” In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017). DOI:10.18653/v1/D17-1066.
2017f
- (Yu et al., 2017a) ⇒ Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. (2017). “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient.” In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017).