Location Test
(Redirected from Location test)
Jump to navigation
Jump to search
A Location Test is a statistical hypothesis test that compares the location parameter of a statistical population to a given constant, or that compares the location parameters of two statistical populations to each other.
- Context:
- It can range from being a One-Sample Location Test to being a Two-Sample Location Test to being ...
- It can range from being a Parametric Location Test to being a Nonparametric Location Test.
- It can range from being a Paired Location Test to being an Independent Location Test.
- It can range from being an Ordinal Location Test to being a Nominal Location Test.
- Example(s):
- See: Location Parameter, Statistical Population, Expected Value.
References
2016
- (Wikipedia, 2016) ⇒ https://en.wikipedia.org/wiki/location_test Retrieved:2016-9-14.
- A location test is a statistical hypothesis test that compares the location parameter of a statistical population to a given constant, or that compares the location parameters of two statistical populations to each other. Most commonly, the location parameter (or parameters) of interest are expected values, but location tests based on medians or other measures of location are also used.
- https://en.wikipedia.org/w/index.php?title=Location_test&action=edit§ion=3
- The following table summarizes some common parametric and nonparametric tests for the means of one or more samples.
1 group | N ≥ 30 | One-sample t-test | ||
N < 30 | Normally distributed | One-sample t-test | ||
Not normal | Sign test | |||
2 groups | Independent | N ≥ 30 | t-test | |
N < 30 | Normally distributed | t-test | ||
Not normal | Mann–Whitney U or Wilcoxon rank-sum test | |||
Paired | N ≥ 30 | paired t-test | ||
N < 30 | Normally distributed | paired t-test | ||
Not normal | Wilcoxon signed-rank test | |||
3 or more groups | Independent | Normally distributed | 1 factor | One way anova |
≥ 2 factors | two or other anova | |||
Not normal | Kruskal–Wallis one-way analysis of variance by ranks | |||
Dependent | Normally distributed | Repeated measures anova | ||
Not normal | Friedman two-way analysis of variance by ranks |
1 group | np and n(1-p) ≥ 5 | Z-approximation | |
np or n(1-p) < 5 | binomial | ||
2 groups | Independent | np < 5 | fisher exact test |
np ≥ 5 | chi-squared test | ||
Paired | McNemar or Kappa | ||
3 or more groups | Independent | np < 5 | collapse categories for chi-squared test |
np ≥ 5 | chi-squared test | ||
Dependent | Cochran´s Q |
2010
- http://www.psychology.emory.edu/clinical/bliwise/Tutorials/CHTESTS/choose/nom.htm
- QUOTE: The following tests can be used with nominal data. Which test you select is determined by the number of samples and whether you are testing an hypothesis about group differences or the association between independent and dependent variables. If you are testing an hypothesis about group differences, you also must consider whether the groups/samples are independent or dependent
- QUOTE: The following tests can be used with nominal data. Which test you select is determined by the number of samples and whether you are testing an hypothesis about group differences or the association between independent and dependent variables. If you are testing an hypothesis about group differences, you also must consider whether the groups/samples are independent or dependent