Instrumental Variables Estimation Algorithm

From GM-RKB
Jump to navigation Jump to search

An Instrumental Variables Estimation Algorithm is a causal relationship estimation algorithm that ...



References

2019

  • (Wikipedia, 2019) ⇒ https://en.wikipedia.org/wiki/Instrumental_variables_estimation Retrieved:2019-11-13.
    • In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term, in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.

      Instrumental variable methods allow for consistent estimation when the explanatory variables (covariates) are correlated with the error terms in a regression model. Such correlation may occur 1) when changes in the dependent variable change the value of at least one of the covariates ("reverse" causation), 2) when there are omitted variables that affect both the dependent and independent variables, or 3) when the covariates are subject to non-random measurement error. Explanatory variables which suffer from one or more of these issues in the context of a regression are sometimes referred to as endogenous. In this situation, ordinary least squares produces biased and inconsistent estimates. However, if an instrument is available, consistent estimates may still be obtained. An instrument is a variable that does not itself belong in the explanatory equation but is correlated with the endogenous explanatory variables, conditionally on the value of other covariates.

      In linear models, there are two main requirements for using IVs:

      • The instrument must be correlated with the endogenous explanatory variables, conditionally on the other covariates. If this correlation is strong, then the instrument is said to have a strong first stage. A weak correlation may provide misleading inferences about parameter estimates and standard errors. [1]
      • The instrument cannot be correlated with the error term in the explanatory equation, conditionally on the other covariates. In other words, the instrument cannot suffer from the same problem as the original predicting variable. If this condition is met, then the instrument is said to satisfy the exclusion restriction.