Inhomogeneous Second-Order Linear Differential Equation
Jump to navigation
Jump to search
A Inhomogeneous Second-Order Linear Differential Equation is a Second-order Linear Differential Equation which equals to a non-zero function.
- AKA: Nonhomogeneous Second-Order Linear Differential Equation.
- Context:
- It can be expressed as
- [math]\displaystyle{ a_2(t)\frac{d^2y}{dt^2}+a_1(t)\frac{dy}{dt}+a_0(t)y=b(t)\quad\iff \quad\frac{d^2y}{dt^2}+p(t)\frac{dy}{dt}+q(t)y=g(t) }[/math]
- [math]\displaystyle{ \textrm{with} \quad b(t)\neq 0, \quad\textrm{and}\quad g(t)\neq 0 }[/math]
- Alternatively, these expressions can be written as
- [math]\displaystyle{ a_2(t)y''+a_1(t)y'+a_0(t)y=b(t)\quad\iff \quad y''+p(t)y'+q(t)y=g(t) }[/math]
- [math]\displaystyle{ \textrm{with}\quad y''=\frac{d^2y}{dt^2},\;y'=\frac{dy}{dt} \quad\textrm{and}\quad b(t)\neq 0, \quad g(t)\neq 0 }[/math]
- Example(s):
- Counter-Example(s):
- See: Second-order Linear Differential Equation, First-Order Linear Differential Equation, Differential Equation, Linear Function.