F-Distribution
A F-Distribution is a continuous probability distribution with parameters [math]\displaystyle{ d_1 }[/math] and [math]\displaystyle{ d_2 }[/math] such that [math]\displaystyle{ f(x; d_1,d_2) = }[/math] [math]\displaystyle{ \frac{ \sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right) } }[/math] [math]\displaystyle{ = \frac{1}{\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1+\frac{d_1}{d_2}\,x\right)^{-\frac{d_1+d_2}{2} } }[/math]
- AKA: Snedecor's F-distribution, Fisher–Snedecor distribution.
- Context:
- It can be referenced by an F-Statistic.
- …
- Counter-Example(s):
- See: F-test, F-test of Equality of Variances, Analysis of variance, Statistical Test, Bartlett's Test, Levene's Test, Brown–Forsythe Test, Population Genetics, One-way ANOVA, Null Distribution, Confluent Hypergeometric Function, Beta Function, Excess Kurtosis.
References
2016
- (Wikipedia, 2016) ⇒ https://en.wikipedia.org/wiki/F-distribution Retrieved:2016-8-7.
- The F-distribution, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor) is, in probability theory and statistics, a continuous probability distribution.
The F-distribution arises frequently as the null distribution of a test statistic, most notably in the analysis of variance; see F-test.
- parameters =d1, d2 > 0 deg. of freedom|
support = x ∈ [0, +∞)|
pdf = [math]\displaystyle{ \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\! }[/math] |
cdf = [math]\displaystyle{ I_{\frac{d_1 x}{d_1 x + d_2}} \left(\tfrac{d_1}{2}, \tfrac{d_2}{2} \right) }[/math] |
mean = [math]\displaystyle{ \frac{d_2}{d_2-2}\! }[/math]
for d2 > 2|median =|
mode = [math]\displaystyle{ \frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2} }[/math]
for d1 > 2|variance = [math]\displaystyle{ \frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\! }[/math]
for d2 > 4|skewness = [math]\displaystyle{ \frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\! }[/math]
for d2 > 6
- parameters =d1, d2 > 0 deg. of freedom|
- The F-distribution, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor) is, in probability theory and statistics, a continuous probability distribution.
- (Wikipedia, 2016) ⇒ https://en.wikipedia.org/wiki/F-distribution#Definition Retrieved:2016-8-7.
- If a random variable X has an F-distribution with parameters d1 and d2, we write X ~ F(d1, d2). Then the probability density function (pdf) for X is given by : [math]\displaystyle{ \begin{align} f(x; d_1,d_2) &= \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \\ &=\frac{1}{\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1+\frac{d_1}{d_2}\,x\right)^{-\frac{d_1+d_2}{2}} \end{align} }[/math] for real x ≥ 0. Here [math]\displaystyle{ \mathrm{B} }[/math] is the beta function. In many applications, the parameters d1 and d2 are positive integers, but the distribution is well-defined for positive real values of these parameters.
The cumulative distribution function is : [math]\displaystyle{ F(x; d_1,d_2)=I_{\frac{d_1 x}{d_1 x + d_2}}\left (\tfrac{d_1}{2}, \tfrac{d_2}{2} \right), }[/math] where I is the regularized incomplete beta function.
The expectation, variance, and other details about the F(d1, d2) are given in the sidebox; for d2 > 8, the excess kurtosis is : [math]\displaystyle{ \gamma_2 = 12\frac{d_1(5d_2-22)(d_1+d_2-2)+(d_2-4)(d_2-2)^2}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)} }[/math] .
The k-th moment of an F(d1, d2) distribution exists and is finite only when 2k < d2 and it is equal to : [math]\displaystyle{ \mu _{X}(k) =\left( \frac{d_{2}}{d_{1}}\right)^{k}\frac{\Gamma \left(\tfrac{d_1}{2}+k\right) }{\Gamma \left(\tfrac{d_1}{2}\right) }\frac{\Gamma \left(\tfrac{d_2}{2}-k\right) }{\Gamma \left( \tfrac{d_2}{2}\right) } }[/math] The F-distribution is a particular parametrization of the beta prime distribution, which is also called the beta distribution of the second kind.
The characteristic function is listed incorrectly in many standard references (e.g., ). The correct expression [1] is : [math]\displaystyle{ \varphi^F_{d_1, d_2}(s) = \frac{\Gamma(\frac{d_1+d_2}{2})}{\Gamma(\tfrac{d_2}{2})} U \! \left(\frac{d_1}{2},1-\frac{d_2}{2},-\frac{d_2}{d_1} \imath s \right) }[/math] where U(a, b, z) is the confluent hypergeometric function of the second kind.
- If a random variable X has an F-distribution with parameters d1 and d2, we write X ~ F(d1, d2). Then the probability density function (pdf) for X is given by : [math]\displaystyle{ \begin{align} f(x; d_1,d_2) &= \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \\ &=\frac{1}{\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1+\frac{d_1}{d_2}\,x\right)^{-\frac{d_1+d_2}{2}} \end{align} }[/math] for real x ≥ 0. Here [math]\displaystyle{ \mathrm{B} }[/math] is the beta function. In many applications, the parameters d1 and d2 are positive integers, but the distribution is well-defined for positive real values of these parameters.
- ↑ Phillips, P. C. B. (1982) "The true characteristic function of the F distribution," Biometrika, 69: 261–264
2008
- (Upton & Cook, 2008) ⇒ Graham Upton, and Ian Cook. (2008). “A Dictionary of Statistics, 2nd edition revised." Oxford University Press. ISBN:0199541450
- QUOTE: F-Distribution: If [math]\displaystyle{ Y_1 }[/math] and [math]\displaystyle{ Y_2 }[/math] are independent chi-squared random variables with [math]\displaystyle{ v_1 }[/math] and [math]\displaystyle{ v_2 }[/math] degrees of freedom, respectively, then the ratio [math]\displaystyle{ X }[/math] given by :[math]\displaystyle{ X = \frac{Y_1}{v_1}\bigg / \frac{Y_2}{v_2} }[/math] is said to have an [math]\displaystyle{ F }[/math]-distribution with [math]\displaystyle{ v_1 }[/math], and [math]\displaystyle{ v_2 }[/math] degrees of freedom. This may be written as the [math]\displaystyle{ F_{v_1, v_2} }[/math]-distribution. Evidently 1/X will have a [math]\displaystyle{ F_{v_2, v_1} }[/math]-distribution.