Expected Value Estimation Task
(Redirected from Expected Value Estimation)
Jump to navigation
Jump to search
An Expected Value Estimation Task is a value estimation task of an expected value.
- …
- Example(s):
- Given a binomial stochastic process [math]\displaystyle{ B(n,p) }[/math] (such as a slot machine), with [math]\displaystyle{ n=5 }[/math] events of which [math]\displaystyle{ k=1 }[/math] is a success event, what is the expected value for the success probability [math]\displaystyle{ p }[/math]?
[math]\displaystyle{ = \frac{k}{n} = \frac{1}{5} }[/math].
- …
- Given a binomial stochastic process [math]\displaystyle{ B(n,p) }[/math] (such as a slot machine), with [math]\displaystyle{ n=5 }[/math] events of which [math]\displaystyle{ k=1 }[/math] is a success event, what is the expected value for the success probability [math]\displaystyle{ p }[/math]?
- Counter-Example(s):
- See: Maximum Likelihood Estimation.
References
2012
- http://www.math.uah.edu/stat/point/Estimators.html
- QUOTE: … Thus, for an unbiased estimator, the expected value of the estimator is the parameter being estimated, clearly a desirable property. On the other hand, a positively biased estimator overestimates the parameter, on average, while a negatively biased estimator underestimates the parameter on average. …
1996
- (Du et al., 1996) ⇒ Z-P Du., J. Arrillaga, and N. Watson. (1996). “Continuous Harmonic State Estimation of Power Systems.” In: Generation, Transmission and Distribution, IEE Proceedings -, vol. 143, no. 4, pp. 329-336. IET,
- QUOTE: … A conditional expected value estimation in [4] can be shown to be equivalent to the weighted minimum-quadratic norm estimation, with the weighted matrix being the variance submatrix of unmeasured bus injection currents. …
1993
- (Miller et al., 1993) ⇒ John W. Miller, Rod Goodman, and Padhraic Smyth. (1993). “On Loss Functions Which Minimize to Conditional Expected Values and Posterior Probabilities.” In: IEEE Transactions on Information Theory, 39(4).
- QUOTE: … the formal definition: where v si p (y). dy. If L (y, $) satisfies this property (cl), we call it “P-admissible,” to indicate that the loss function is admissible for use in probability estimation or expected value estimation. …