Entity Reference Grounding Task

From GM-RKB
Jump to navigation Jump to search

An Entity Reference Grounding Task is a reference grounding task that involves the mapping of all entity references to a canonical entity references (when one exists).



References

2018

  • (Wikipedia, 2018) ⇒ https://en.wikipedia.org/wiki/Record_linkage#Entity_resolution Retrieved:2018-5-27.
    • Entity resolution is an operational intelligence process, typically powered by an entity resolution engine or middleware, whereby organizations can connect disparate data sources with a view to understanding possible entity matches and non-obvious relationships across multiple data silos. It analyzes all of the information relating to individuals and/or entities from multiple sources of data, and then applies likelihood and probability scoring to determine which identities are a match and what, if any, non-obvious relationships exist between those identities.

      Entity resolution engines are typically used to uncover risk, fraud, and conflicts of interest, but are also useful tools for use within customer data integration (CDI) and master data management (MDM) requirements. Typical uses for entity resolution engines include terrorist screening, insurance fraud detection, USA Patriot Act compliance, organized retail crime ring detection and applicant screening.

      For example: Across different data silos – employee records, vendor data, watch lists, etc. – an organization may have several variations of an entity named ABC, which may or may not be the same individual. These entries may, in fact, appear as ABC1, ABC2, or ABC3 within those data sources. By comparing similarities between underlying attributes such as address, date of birth, or social security number, the user can eliminate some possible matches and confirm others as very likely matches.

      Entity resolution engines then apply rules, based on common sense logic, to identify hidden relationships across the data. In the example above, perhaps ABC1 and ABC2 are not the same individual, but rather two distinct people who share common attributes such as address or phone number.

2017