Differentiable Neural Computer
(Redirected from Differentiable neural computer)
Jump to navigation
Jump to search
A Differentiable Neural Computer is a memory-augmented neural network that ...
- See: Recurrent NNet.
References
2017
- https://deepmind.com/blog/differentiable-neural-computers/
- QUOTE: In a recent study in Nature, we introduce a form of memory-augmented neural network called a differentiable neural computer, and show that it can learn to use its memory to answer questions about complex, structured data, including artificially generated stories, family trees, and even a map of the London Underground. We also show that it can solve a block puzzle game using reinforcement learning. …
… When we designed DNCs, we wanted machines that could learn to form and navigate complex data structures on their own. At the heart of a DNC is a neural network called a controller, which is analogous to the processor in a computer. A controller is responsible for taking input in, reading from and writing to memory, and producing output that can be interpreted as an answer. The memory is a set of locations that can each store a vector of information.
- QUOTE: In a recent study in Nature, we introduce a form of memory-augmented neural network called a differentiable neural computer, and show that it can learn to use its memory to answer questions about complex, structured data, including artificially generated stories, family trees, and even a map of the London Underground. We also show that it can solve a block puzzle game using reinforcement learning. …
2016
- (Graves et al., 2016) ⇒ Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwinska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. (2016). “Hybrid Computing Using a Neural Network with Dynamic External Memory.” In: Nature, 538(7626). doi:10.1038/nature20101
- ABSTRACT: Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external readâwrite memory.