Absolute Value Function

From GM-RKB
(Redirected from Absolute Value)
Jump to navigation Jump to search

An Absolute Value Function of any real number is always its positive value

[math]\displaystyle{ |x| =\left\{\begin{array}{ll}x \quad\textrm{for} \quad x \geq 0\\-x \quad\textrm{for}\quad x \lt 0\end{array}\right. }[/math]
  • Example(s):
    • |-3|=3
    • [math]\displaystyle{ |(3,0,4)|=\sqrt{3^2+0^2+4^2}=5 }[/math]
    • [math]\displaystyle{ |3+i4|=\sqrt{3^2+4^2}=5 }[/math]
  • Counter-Example(s):

See: Numeric Function, Positive Value, Negative Value, Complex Number Modulus.



References

2016

[math]\displaystyle{ |x|=xsgn(x) }[/math]
where sgn(x) is the sign function. The absolute value is therefore always greater than or equal to 0. (...) The absolute value of a complex number [math]\displaystyle{ z=x+iy }[/math], also called the complex modulus,

2008