2014 SpatiallyEmbeddedCoOffencePredi

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

Crime reduction and prevention strategies are essential to increase public safety and reduce the crime costs to society. Law enforcement agencies have long realized the importance of analyzing co-offending networks --- networks of offenders who have committed crimes together --- for this purpose. Although network structure can contribute significantly to co-offence prediction, research in this area is very limited. Here we address this important problem by proposing a framework for co-offence prediction using supervised learning. Considering the available information about offenders, we introduce social, geographic, geo-social and similarity feature sets which are used for classifying potential negative and positive pairs of offenders. Similar to other social networks, co-offending networks also suffer from a highly skewed distribution of positive and negative pairs. To address the class imbalance problem, we identify three types of criminal cooperation opportunities which help to reduce the class imbalance ratio significantly, while keeping half of the co-offences. The proposed framework is evaluated on a large crime dataset for the Province of British Columbia, Canada. Our experimental evaluation of four different feature sets show that the novel geo-social features are the best predictors. Overall, we experimentally show the high effectiveness of the proposed co-offence prediction framework. We believe that our framework will not only allow law enforcement agencies to improve their crime reduction and prevention strategies, but also offers new criminological insights into criminal link formation between offenders.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2014 SpatiallyEmbeddedCoOffencePrediMartin Ester
Mohammad A. Tayebi
Uwe Glässer
Patricia L. Brantingham
Spatially Embedded Co-offence Prediction Using Supervised Learning10.1145/2623330.26233532014