2014 MiningTopicsinDocumentsStanding

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

Topic modeling has been widely used to mine topics from documents. However, a key weakness of topic modeling is that it needs a large amount of data (e.g., thousands of documents) to provide reliable statistics to generate coherent topics. However, in practice, many document collections do not have so many documents. Given a small number of documents, the classic topic model LDA generates very poor topics. Even with a large volume of data, unsupervised learning of topic models can still produce unsatisfactory results. In recently years, knowledge-based topic models have been proposed, which ask human users to provide some prior domain knowledge to guide the model to produce better topics. Our research takes a radically different approach. We propose to learn as humans do, i.e., retaining the results learned in the past and using them to help future learning. When faced with a new task, we first mine some reliable (prior) knowledge from the past learning / modeling results and then use it to guide the model inference to generate more coherent topics. This approach is possible because of the big data readily available on the Web. The proposed algorithm mines two forms of knowledge: must-link (meaning that two words should be in the same topic) and cannot-link (meaning that two words should not be in the same topic). It also deals with two problems of the automatically mined knowledge, i.e., wrong knowledge and knowledge transitivity. Experimental results using review documents from 100 product domains show that the proposed approach makes dramatic improvements over state-of-the-art baselines.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2014 MiningTopicsinDocumentsStandingBing Liu
Zhiyuan Chen
Mining Topics in Documents: Standing on the Shoulders of Big Data10.1145/2623330.26236222014