2012 IncorporatingHeterogeneousInfor

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

A social tagging system provides users an effective way to collaboratively annotate and organize items with their own tags. A social tagging system contains heterogeneous information like users' tagging behaviors, social networks, tag semantics and item profiles. All the heterogeneous information helps alleviate the cold start problem due to data sparsity. In this paper, we model a social tagging system as a multi-type graph. To learn the weights of different types of nodes and edges, we propose an optimization framework, called OptRank. OptRank can be characterized as follows: (1) Edges and nodes are represented by features. Different types of edges and nodes have different set of features. (2) OptRank learns the best feature weights by maximizing the average AUC (Area Under the ROC Curve) of the tag recommender. We conducted experiments on two publicly available datasets, i.e., Delicious and Last.fm. Experimental results show that: (1) OptRank outperforms the existing graph based methods when only (user, tag, item) relation is available. (2) OptRank successfully improves the results by incorporating social network, tag semantics and item profiles.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2012 IncorporatingHeterogeneousInforJianyong Wang
Wei Feng
Incorporating Heterogeneous Information for Personalized Tag Recommendation in Social Tagging Systems10.1145/2339530.23397292012