2009 LiteratureCurateProtInteractDBs

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Biocuration Task, Protein-Protein Interaction, Yeast PPI, Human PPI, Arabidopsis PPI, YPD, MIPS, SGD, TAIR, MIPS, BIND, DIP, MINT, IntAct, BioGRID, HPRD.

Notes

Cited By

Quotes

Abstract

High-quality datasets are needed to understand how global and local properties of protein-protein interaction, or 'interactome', networks relate to biological mechanisms, and to guide research on individual proteins. In an evaluation of existing curation of protein interaction experiments reported in the literature, we found that curation can be error-prone and possibly of lower quality than commonly assumed.

An essential component of systems biology is discovery of the network of all possible physical protein-protein interactions (PPIs), the ‘interactome’ network1–3. There are two complementary ways to obtain comprehensive PPI information. One is to systematically test all pairwise combinations of proteins for physical interactions at proteome scale with a high-throughput assay3. The alternative is to curate all publications in the literature, each describing one (or a few) PPI(s) assayed at low throughput4, and then make the curation accessible in interaction databases. As neither strategy can come close to allowing us to discover the full interactomes yet5–7, the matter arises as to which strategy can best fill in the missing pieces.


References

  • 1. Cusick, M.E., Klitgord, N., Vidal, M. & Hill, D.E. Interactome: Gateway into systems biology. Hum. Mol. Genet. 14, R171–R181 (2005).
  • 2. Bader, S., Kuhner, S. & Gavin, A.C. Interaction networks for systems biology. FEBS Lett. 582, 1220–1224 (2008).
  • 3. Vidal, M. Interactome modeling. FEBS Lett. 579, 1834–1838 (2005).
  • 4. Roberts, P.M. Mining literature for systems biology. Brief. Bioinform. 7, 399–406 (2006).
  • 5. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods 6, 83–90 (2008).
  • 6. Stumpf, M.P. et al. Estimating the size of the human interactome. Proceedings of Natl. Acad. Sci. USA 105, 6959–6964 (2008).
  • 7. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).
  • 8. Parrish, J.R., Gulyas, K.D. & Finley, R.L. Jr. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17, 387–393 (2006).
  • 9. Ito, T. et al. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol. Cell. Proteomics 1, 561–566 (2002).
  • 10. Köcher, T. & Superti-Furga, G. Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat. Methods 4, 807–815 (2007).
  • 11. Suter, B., Kittanakom, S. & Stagljar, I. Interactive proteomics: what lies ahead? Biotechniques 44, 681–691 (2008).
  • 12. Tarassov, K. et al. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).
  • 13. Garrels, J.I. YPD–A database for the proteins of Saccharomyces cerevisiae. Nucleic Acids Res. 24, 46–49 (1996).
  • 14. Hong, E.L. et al. Gene Ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res. 36, D577–D581 (2008).
  • 15. Swarbreck, D. et al. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 36, D1009–D1014 (2007).
  • 16. Pagel, P. et al. The MIPS mammalian protein-protein interaction database. Bioinformatics 21, 832–834 (2005).
  • 17. Bader, G.D., Betel, D. & Hogue, C.W. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248–250 (2003).
  • 18. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).
  • 19. Chatr-aryamontri, A. et al. MINT: the Molecular INTeraction database. Nucleic Acids Res. 35, D572–D574 (2007).
  • 20. Kerrien, S. et al. IntAct–open source resource for molecular interaction data. Nucleic Acids Res. 35, D561–D565 (2007).
  • 21. Reguly, T. et al. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5, 11 (2006).
  • 22. Mishra, G.R. et al. Human protein reference database?2006 update. Nucleic Acids Res. 34, D411–D414 (2006).
  • 23. Myers, C.L., Barrett, D.R., Hibbs, M.A., Huttenhower, C. & Troyanskaya, O.G. Finding function: evaluation methods for functional genomic data. BMC Genomics 7, 187 (2006).
  • 24. Mika, S. & Rost, B. Protein-protein interactions more conserved within species than across species. PLoS Comput. Biol. 2, e79 (2006).
  • 25. Simonis, N. et al. Empirically-controlled mapping of the Caenorhabditis elegans protein-protein interaction network. Nat. Methods 6, 47–54 (2008).
  • 26. Jansen, R. & Gerstein, M. Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Curr. Opin. Microbiol. 7, 535–545 (2004).
  • 27. Braun, P. et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 6, 91–97 (2008).
  • 28. Bader, G.D. & Hogue, C.W. Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997 (2002).
  • 29. Ramírez, F., Schlicker, A., Assenov, Y., Lengauer, T. & Albrecht, M. Computational analysis of human protein interaction networks. Proteomics 7, 2541–2552 (2007).
  • 30. Howe, D. et al. The future of biocuration. Nature 455, 47–50 (2008).
  • 31. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).
  • 32. Peri, S. et al. Development of Human Protein Reference Database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–2371 (2003).
  • 33. Orchard, S. et al. Submit your interaction data the IMEx way. A step by step guide to trouble-free deposition. Proteomics 7, 28–34 (2007).
  • 34. Kerrien, S. et al. Broadening the horizon - Level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol. 5, 44 (2007).
  • 35. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).
  • 36. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).
  • 37. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).
  • 38. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).
  • 39. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of Natl. Acad. Sci. USA 98, 4569–4574 (2001).
  • 40. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).
  • 41. Alfarano, C. et al. The Biomolecular Interaction Network Database (BIND) and related tools 2005 update. Nucleic Acids Res. 33, D418–D424 (2005).
  • 42. Mathivanan, S. et al. An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7, S19 (2006).
  • 43. Gentleman, R. & Huber, W. Making the most of high-throughput protein-interaction data. Genome Biol. 8, 112 (2007).
  • 44. Mackay, J.P., Sunde, M., Lowry, J.A., Crossley, M. & Matthews, J.M. Protein interactions: is seeing believing? Trends Biochem. Sci. 32, 530–531 (2007).
  • 45. Mackay, J.P., Sunde, M., Lowry, J.A., Crossley, M. & Matthews, J.M. Response to Chatr-aryamontri et al.: Protein interactions: to believe or not to believe? Trends Biochem. Sci. 33, 242–243 (2008).
  • 46. Nelson, D.R. Gene nomenclature by default, or BLASTing to Babel. Hum. Genomics 2, 196–201 (2005).
  • 47. Krogan, N.J. et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell 12, 1565–1576 (2003).
  • 48. Zanzoni, A. et al. MINT: a Molecular INTeraction database. FEBS Lett. 513, 135–140 (2002).
  • 49. Philippi, S. & Kohler, J. Addressing the problems with life-science databases for traditional uses and systems biology. Nat. Rev. Genet. 7, 482–488 (2006).
  • 50. Kiemer, L., Costa, S., Ueffing, M. & Cesareni, G. WI.-PHI a weighted yeast interactome enriched for direct physical interactions. Proteomics 7, 932–943 (2007).
  • 51. Chatr-Aryamontri, A., Ceol, A., Licata, L. & Cesareni, G. Protein interactions: integration leads to belief. Trends Biochem. Sci. 33, 241–242 (2008).
  • 52. Boxem, M. et al. A protein domain-based interactome network for C. elegans early embryogenesis. Cell 134, 534–545 (2008).
  • 53. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002).
  • 54. Batada, N.N., Hurst, L.D. & Tyers, M. Evolutionary and physiological importance of hub proteins. PLoS Comput. Biol. 2, e88 (2006).
  • 55. Orchard, S. et al. The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat. Biotechnol. 25, 894–898 (2007).
  • 56. Hermjakob, H. et al. The HUPO PSI’s molecular interaction format – a community standard for the representation of protein interaction data. Nat. Biotechnol. 22, 177–183 (2004).
  • 57. Ceol, A., Chatr-Aryamontri, A., Licata, L. & Cesareni, G. Linking entries in protein interaction database to structured text: the FEBS Letters experiment. FEBS Lett. 582, 1171–1177 (2008).
  • 58. Gerstein, M., Seringhaus, M. & Fields, S. Structured digital abstract makes text mining easy. Nature 447, 142 (2007).
  • 59. Taylor, C.F. et al. Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. 26, 889–896 (2008).
  • 60. Stevens, S.W. et al. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell 9, 31–44 (2002).
  • 61. Fromont-Racine, M., Rain, J.C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat. Genet. 16, 277–282 (1997).
  • 62. Walhout, A.J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).
  • 63. Matthews, L.R. et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res. 11, 2120–2126 (2001).
  • 64. Yu, H. et al. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 14, 1107–1118 (2004).
  • 65. Ramani, A.K., Bunescu, R.C., Mooney, R.J. & Marcotte, E.M. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol. 6, R40 (2005).
  • 66. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proceedings of Natl. Acad. Sci. USA 102, 1974–1979 (2005).
  • 67. Levy, E.D. & Pereira-Leal, J.B. Evolution and dynamics of protein interactions and networks. Curr. Opin. Struct. Biol. 18, 349–357 (2008).
  • 68. Tompa, P. & Fuxreiter, M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2–8 (2008).
  • 69. Fuxreiter, M., Tompa, P. & Simon, I. Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23, 950–956 (2007).
  • 70. Beltrao, P. & Serrano, L. Specificity and evolvability in eukaryotic protein interaction networks. PLoS Comput. Biol. 3, e25 (2007).

,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2009 LiteratureCurateProtInteractDBsMichael E Cusick
Haiyuan Yu
Alex Smolyar
Kavitha Venkatesan
Anne-Ruxandra Carvunis
Nicolas Simonis
Jean-François Rual
Heather Borick
Pascal Braun
Matija Dreze
Jean Vandenhaute
Mary Galli
Junshi Yazaki
David E Hill
Joseph R Ecker
Frederick P Roth
Marc Vidal
Literature-Curated Protein Interaction Datasetshttp://dx.doi.org/10.1038/nmeth.128410.1038/nmeth.1284