2003 LatentDirichletAllocation
- (Blei, Ng & Jordan, 2003) ⇒ David M. Blei, Andrew Y. Ng, and Michael I. Jordan. (2003). “Latent Dirichlet Allocation.” In: The Journal of Machine Learning Research, 3. doi:10.1162/jmlr.2003.3.4-5.993
Subject Headings: Latent Dirichlet Allocation, TF-IDF, pLSI.
Notes
- This is the journal paper of (Blei, Ng & Jordan, 2001) presented at NIPS 2001.
Cited By
- ~2,951 http://scholar.google.com/scholar?q=%22Latent+Dirichlet+Allocation%22+2003
- ~ 782 http://portal.acm.org/citation.cfm?id=944937&preflayout=flat#citedby
2004
- (Griffiths & Steyvers, 2004) ⇒ Thomas L. Griffiths, and Mark Steyvers. (2004). “Finding Scientific Topics.” In: Proceedings of the National Academy of Sciences (PNAS), 101(Suppl. 1). doi:10.1073/pnas.0307752101
Quotes
Abstract
We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.,
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2003 LatentDirichletAllocation | Andrew Y. Ng Michael I. Jordan David M. Blei | Latent Dirichlet Allocation | The Journal of Machine Learning Research | http://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf | 10.1162/jmlr.2003.3.4-5.993 | 2003 |